Skip to content

Recurrence Relations

Recurrence

Def. A recurrence is an equation that recursively defines a sequence.

Example: - Fibonacci Numbers - Quick sort recurrence

Question: Simple formula for recurrences?

  • First use PC to calculate the first values
  • save all vals in an array.
  • plot the values

Telescoping recurrence

Linear 1st-order recurrence telescope to a sum

Example

Example 1. \(a_n=a_{n-1}+n\) with \(a_0=0\)

\[ \begin{aligned} a_n & =a_{n-1}+n \quad \text { with } a_0=0 \\ & =a_{n-2}+(n-1)+n \\ & =a_{n-3}+(n-2)+(n-1)+n \\ & =a_0+\sum_{1 \leq k \leq n} k=n(n+1)/2\end{aligned} \]

When coefficients are not 1 , multiply/divide by a summation factor.

Example

Example 2. \(a_n=2 a_{n-1}+2^n\) with \(a_0=0\).

\[ \begin{array}{ll} \text { Divide by } 2^n & \frac{a_n}{2^n}=\frac{a_{n-1}}{2^{n-1}}+1 \\ \text { Telescope to a sum } & \frac{a_n}{2^n}=\sum_{1 \leq k \leq n} 1=n \\ &a_n=n 2^n \end{array} \]

How to find summation factor?

  • for \(a_n=x_n a_{n-1}+\ldots\), we divide by \(x_n x_{n-1} x_{n-2} \ldots x_1\).

Example

Example 3. \(a_n=\left(1+\frac{1}{n}\right) a_{n-1}+2\) for \(n>0\) with \(a_0=0\).

We have summation factor \(\frac{n+1}{n} \frac{n}{n-1} \frac{n-1}{n-2} \cdots \frac{3}{2} \frac{2}{1}=n+1\), so divide by \(n+1\).

\[ \begin{array}{rlrl} \text { Divide by } n+1 & \frac{a_n}{n+1} =\frac{a_{n-1}}{n}+\frac{2}{n+1} \\ & =2 \sum_{1 \leq k \leq n} \frac{1}{k+1}=2 H_{n+1}-1 \end{array} \]

That is \(a_n=2(n+1)\left(H_{n+1}-1\right)\).

Verification: \((1+1/n)(2n(H_n-1))+2=2(n+1)(H_n-1)\).

Also check initial values

Exercise

Exercise: \(n a_n=(n-2) a_{n-1}+2\) for \(n>1\) with \(a_1=1\)

Summation factor: \(\frac{n-2}{n} \frac{n-3}{n-1} \frac{n-4}{n-2} \cdots=\frac{1}{n(n-1)}\)

A simpler way shows that \(a_2=2 \quad\) so \(\quad a_2=1\), therefore \(a_n=1\).

Elementary discrete sums

  • geometric series

    $$ \sum_{0 \leq k<n} xk=\frac{1-xn}{1-x} $$ - arithmetic series

    $$ \sum_{0 \leq k<n} k=\frac{n(n-1)}{2}=\left(\begin{array}{l} n \ 2 \end{array}\right) $$ - binomial (upper)

    \[ \sum_{0 \leq k \leq n}\binom km=\left(\begin{array}{l} n+1 \\ m+1 \end{array}\right) \]
  • binomial theorem $$ \sum_{0 \leq k \leq n}\left(\begin{array}{l} n \ k \end{array}\right) x^k y{n-k}=(x+y)n $$

  • Harmonic numbers

    \[ \sum_{1 \leq k \leq n} \frac{1}{k}=H_n \]
  • Vandermonde convolution $$ \sum_{0\leq k\leq n} \binom mk \binom n{t-k}=\binom{m+n}t $$

Types of recurrences

  • First order
    • linear: \(a_n=na_n-1\).
    • nonlinear: \(a_n=1/(1+a_{n-1})\)
  • second order
    • linear: \(a_n=a_{n-1}+2 a_{n-2}\) (linear computation)
    • nonlinear: \(a_n=a_{n-1} a_{n-2}+\sqrt{a_{n-2}}\)
    • var coeffs: \(a_n=n a_{n-1}+(n-1) a_{n-2}+1\)
  • higher order: \(a_n=f\left(a_{n-1}, a_{n-2}, \ldots, a_{n-t}\right)\)
  • full history: \(a_n=n+a_{n-1}+a_{n-2} \ldots+a_1\)
  • divide and conquer: \(a_n=a_{\lfloor n / 2\rfloor}+a_{\lceil n / 2\rceil}+n\).

Nonlinear first order recurrences

Using Newton's method for \(\sqrt 2\), i.e. \(c_N=\frac{1}{2}\left(c_{N-1}+\frac{2}{c_{N-1}}\right)\), quad convergence.

Higher order linear recrs

Systematic way using generating functions(later).

Example: \(a_n=5 a_{n-1}-6 a_{n-2} \quad\) for \(n \geq 2\) with \(a_0=0\) and \(a_1=1\)

  • Postulate that \(x^n=5 x^{n-1}-6 x^{n-2}\)
  • Divide by \(x^{n-2}\): \(x^2-5 x+6=0\)
  • Factor: \((x-2)(x-3)=0\)
  • Form of solution must be \(a_n=c_0 3^n+c_1 2^n\).
  • plug in 0 and 1 to see the code.
  • sol is \(a_n=3^n-2^n\).