Skip to content

Ordinary Generating Functions

Definition: \(A(z)=\sum_{k \geq 0} a_k z^k \quad\) is the ordinary generating function (OGF) of seq \(a_0, a_1, a_2, \ldots, a_k, \ldots\).

Notation: \(\left[z^N\right] A(z)\) is "the coefficient of \(z^N\) in \(A(z)\) ".

Seq OGF Explanation
\(1,1,1,1,\cdots\) \(\sum_{N \geq 0} z^N=\frac{1}{1-z}\) Geometric Series
\(1,1 / 2,1 / 6,1 / 24, \cdots\) \(\sum_{N \geq 0} \frac{z^N}{N !}=e^z\) Taylor Expansion for \(e^x\)

Significance. Can represent an entire sequence with a single function.

Operation on OGFs

Scaling

  • If \(\quad A(z)=\sum_{k>0} a_k z^k \quad\) is the OGF of \(a_0, a_1, a_2, \ldots, a_k, \ldots\)
  • then \(\quad A(c z)=\sum_{k \geq 0} c^k a_k z^k \quad\) is the OGF of \(\quad a_0, c a_1, c^2 a_2, c^3 a_3, \ldots\)

Example

If we have \(1,1,1,1,1, \ldots\) for OGF \(\sum_{N \geq 0} z^N=\frac{1}{1-z}\), then \(\sum_{N \geq 0} 2^N z^N=\frac{1}{1-2 z}\) represents for \(1,2,4,8,16,32, \ldots\).

Addition

  • If \(A(z)=\sum_{k \geq 0} a_k z^k \quad\) is the OCF of \(\quad a_0, a_1, a_2, \ldots, a_k, \ldots\)
  • and \(B(z)=\sum_{k \geq 0} b_k z^k \quad\) is the OCF of \(\quad b_0, b_1, b_2, \ldots, b_k, \ldots\)
  • then \(A(z)+B(z)\) is the OCF of \(a_0+b_0, a_1+b_1, a_2+b_2, \ldots, a_k+b_k \ldots\)

Example

\[ \begin{array}{cc} \text { sequence } & \text { OGF } \\ 1,1,1,1,1, \ldots & \sum_{N \geq 0} z^N=\frac{1}{1-z} \\ 1,2,4,8,16,32, \ldots & \sum_{N \geq 0} 2^N z^N=\frac{1}{1-2 z} \\ 0,1,3,7,15,31, \ldots & \frac{1}{1-2 z}-\frac{1}{1-z} \end{array} \]

Differentiation

  • If \(A(z)=\sum_{k \geq 0} a_k z^k\) is the OGF of \(a_0, a_1, a_2, \ldots, a_k, \ldots\)
  • then \(z A^{\prime}(z)=\sum_{k \geq 1} k a_k z^k \quad\) is the OCF of \(0, a_1, 2 a_2, 3 a_3, \ldots, k a_k, \ldots\)
Seq OGF Explanation
\(\frac{1}{1-z}=\sum_{N \geq 0} z^N\) \(1,1,1, \cdots\) constant
\(\frac{z}{(1-z)^2}=\sum_{N \geq 1} N z^N\) \(0, 1, 2, \cdots\) ari. series
\(\frac{z^2}{(1-z)^3}=\sum_{N \geq 2}\binom n2 z^N\) \(0, 0, 1, 3, 6, 10\) Binom series
\(\frac{z^M}{(1-z)^{M+1}}=\sum_{N \geq M}\binom NM z^N\) \(0, \cdots, 1, M+1, (M+2)(M+1)/2\) binom coeffs

Integration

  • If \(A(z)=\sum_{k \geq 0} a_k z^k\) is the OCF of \(a_0, a_1, a_2, \ldots, a_k, \ldots\)
  • then \(\int_0^z A(t) d t=\sum_{n \geq 1} \frac{a_{n-1}}{n} z^n \quad\) is the OGF of \(0, a_0, \frac{a_1}{2}, \frac{a_2}{3}, \ldots, \frac{a_{k-1}}{k}, \ldots\)
Seq OGF Explanation
\(\frac{1}{1-z}=\sum_{N \geq 0} z^N\) \(1,1,1, \cdots\) constant
\(\ln \frac{1}{1-z}=\sum_{N \geq 1} \frac{z^N}{N}\) \(0,1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots\) Harmonic series

Partial Sum

  • If \(A(z)=\sum_{k \geq 0} a_k z^k \quad\) is the OGF of \(a_0, a_1, a_2, \ldots, a_k, \ldots\)
  • then \(\frac{1}{1-z} A(z)\) is the OGF of \(a_0, a_0+a_1, a_0+a_1+a_2, \ldots\)
Proof
\[ \begin{aligned} \frac{1}{1-z} A(z) & =\sum_{k \geq 0} z^k \sum_{n \geq 0} a_n z^n & \text{by definition}\\ & =\sum_{k \geq 0} \sum_{n \geq 0} a_n z^{n+k}& \text{Distribute} \\ & =\sum_{k \geq 0} \sum_{n \geq k} a_{n-k} z^n & \text{change } n \text{ to }n-k\\ & =\sum_{n \geq 0}\left(\sum_{0 \leq k \leq n} a_{n-k}\right) z^n & \text{switch summation order}\\ & =\sum_{n \geq 0}\left(\sum_{0 \leq k \leq n} a_k\right) z^n &\text{ Change } k \text{ to } n-k \end{aligned} \]

Example

If we multiply \(\frac{1}{1-z}=\sum_{N \geq 0} z^N\) and \(\ln \frac{1}{1-z}=\sum_{N \geq 1} \frac{z^N}{N}\), it will give \(\frac{1}{1-z} \ln \frac{1}{1-z}=\sum_{N \geq 1} H_N Z^N\).

In fact, \(\frac{1}{(1-z)^2}=\sum_{N \geq 0}(N+1) z^N\) shows the us the case for it's exactly \(1,2,3\cdots\).

Convolution

  • If \(A(z)=\sum_{k \geq 0} a_k z^k\) is the OGF of \(a_0, a_1, a_2, \ldots, a_k, \ldots\)
  • and \(B(z)=\sum_{k \geq 0} b_k z^k\) is the OGF of \(b_0, b_1, b_2, \ldots, b_k, \ldots\)
  • then \(A(z) B(z)\) is the OGF of \(a_0 b_0, a_1 b_0+a_1 b_0, \ldots, \sum_{0 \leq k \leq n} a_k b_{n-k}, \ldots\)
Proof
\[ \begin{aligned} A(z) B(z) & =\sum_{k \geq 0} a_k z^k \sum_{n \geq 0} b_n z^n \\ & =\sum_{k \geq 0} \sum_{n \geq 0} a_k b_n z^{n+k} \\ & =\sum_{k \geq 0} \sum_{n \geq k} a_k b_{n-k} z^n \\ & =\sum_{n \geq 0}\left(\sum_{0 \leq k \leq n} a_k b_{n-k}\right) z^n\end{aligned} \]

Expanding GFs

  • expressing an unknown GF as a power series(finding the coefficients)

Techniques:

  • Taylor expansion: \(\quad f(z)=f(0)+f^{\prime}(0) z+\frac{f^{\prime \prime}(0)}{2 !} z^2+\frac{f^{\prime \prime \prime}(0)}{3 !} z^3+\frac{f^{\prime \prime \prime \prime}(0)}{4 !} z^4+\ldots\)
  • Reduce to known GFs.

Exercise: Prove that \(\sum_{1 \leq k \leq N} H_k=(N+1)\left(H_{N+1}-1\right)\)

  • LHS = partial sum of Harmonic series
  • GF(LHS) = \(\frac{1}{(1-z)^2} \ln \frac{1}{1-z}\)
  • Expand GF to find RHS coefficients(convolve \(\ln \frac{1}{1-z}\) with \(\frac{1}{(1-z)^2}\)) $$ \left[z^N\right] \frac{1}{(1-z)^2} \ln \frac{1}{1-z}=\sum_{1 \leq k \leq N} \frac{1}{k}(N+1-k) $$
  • Do some math and will be ok.

Lookup Table: Common OGFs

Sequence OGF description
\(1,1,1\cdots\) \(\frac{1}{1-z}=\sum_{N \geq 0} z^N\) all ones, sum via geometric series
\(0,1,2,3,4, \ldots, N, \ldots\) \(\frac{z}{(1-z)^2}=\sum_{N \geq 1} N z^N\) arithmetic series
\(0,0,1,3,6,10, \ldots, \binom N2\) \(\frac{z^2}{(1-z)^3}=\sum_{N\geq 2}\binom n2z^N\) binom coeff with lower 2
\(0, \ldots, 0,1, M+1, \ldots, \binom NM\) \(\frac{z^M}{(1-z)^{M+1}}=\sum_{N>M}\binom NM z^N\) binom coeff with lower m
\(1, M, \binom M2, \binom M3, \cdots, M, 1\) \((1+z)^M=\sum_{N\geq 0}\binom MN z^n\) binom coeff
\(1, M+1, \binom{M+2}2\binom{M+3}3,\cdots\) \(\frac 1{(1-z)^{M+1}}=\sum_{N\geq 0}\binom{N+M}Nz^N\) upper parallel sum
\(1,0,1,0, \ldots, 1,0, \ldots\) \(\frac{1}{1-z^2}=\sum_{N \geq 0} z^{2 N}\) alternating
\(1, c, c^2, c^3, \ldots, c^N, \ldots\) \(\frac{1}{1-c z}=\sum_{N>0} c^N z^N\) geometric
\(1,1, \frac{1}{2 !}, \frac{1}{3 !}, \frac{1}{4 !}, \ldots, \frac{1}{N !}, \ldots\) \(e^z=\sum_{N \geq 0} \frac{z^N}{N !}\) Taylor's \(e^z\) expansion
\(0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{N}, \ldots\) \(\ln \frac{1}{1-z}=\sum_{N \geq 1} \frac{z^N}{N}\) pieces of Harmonic number
\(0,1,1+\frac{1}{2}, 1+\frac{1}{2}+\frac{1}{3}, \ldots, H_N, \ldots\) \(\frac{1}{1-z} \ln \frac{1}{1-z}=\sum_{N \geq 1} H_N z^N\) Harmonic number
\(0,0,1,3\left(\frac{1}{2}+\frac{1}{3}\right), 4\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right), \ldots\) \(\frac{z}{(1-z)^2} \ln \frac{1}{1-z}=\sum_{N \geq 0} N\left(H_N-1\right) z^N\) An example