Skip to content

Catalan Numbers

Intro: How many trangulations of an \((N+2)\)-gon?

  • By recur relation: \(T_N=\sum_{0 \leq k<N} T_k T_{N-1-k}+\delta_{N 0}\).

Intro2: How many gambler's ruin seqs with \(N\) wins?

Intro3: How many Binary Trees with \(N\) Nodes?

Intro4: How many trees with \(N+1\) nodes?

Solving Catalan recr with GFs

  • Let recr hold for all \(n\): \(T_N=\sum_{0 \leq k<N} T_k T_{N-1-k}+\delta_{N 0}\)
  • Multiple by \(z^N\) and sum: \(T(z) := \sum_{N \geq 0} T_N z^N=\sum_{N \geq 0} \sum_{0 \leq k<N} T_k T_{N-1-k} z^N+1\)
  • switch order of summation: \(T(z)=1+\sum_{k \geq 0} \sum_{N>k} T_k T_{N-1-k} z^N\)
  • Change \(N\) to \(N+k+1\): \(T(z)=1+\sum_{k \geq 0} \sum_{N \geq 0} T_k T_N z^{N+k+1}\)
  • Distribute: \(T(z)=1+z\left(\sum_{k \geq 0} T_k z^k\right)\left(\sum_{N \geq 0} T_N z^N\right)\)
  • That is: \(T(z)=1+z T(z)^2\).

Tips: Always worthwhile to check with PCs.

This is a functional GF equation, and we start working with this.

  • Solve with quad. formula: \(z T(z)=\frac{1}{2}(1 \pm \sqrt{1-4 z})\)
  • Expand with binomual theorem: \(z T(z)=-\frac{1}{2} \sum_{N \geq 1}\binom{1/2}N(-4 z)^N\)
  • Set coeffs equal: \(T_N=-\frac{1}{2}\binom{1/2}{N+1}(-4)^{N+1}\).
\[ \begin{aligned} T_N & =-\frac{1}{2}\binom{1/2}{N+1}(-4)^{N+1} \\ & =-\frac{1}{2} \frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \ldots\left(\frac{1}{2}-N\right)(-4)^{N+1}}{(N+1) !} \\ & =\frac{1 \cdot 3 \cdot 5 \cdots(2 N-1) \cdot 2^N}{(N+1) !}\\ &=\frac{1}{N+1}\binom{2N}N.\end{aligned} \]