Standard scale
Informal definition of concise: "easy to compute with constants and standard functions"
Notation for approxs.
- "Big-Oh" approximation
$$
g(N)=f(N)+O(h(N))
$$
- Error will be at most within a constant factor of \(h(N)\) as \(N\) increases.
- "Little-oh" approximation
$$
g(N)=f(N)+o(h(N))
$$
- Error will decrease relative to \(h(N)\) as \(N\) increases.
- "Tilde" approximation
$$
g(N) \sim f(N)
$$
- Weakest nontrivial o-approximation.
Standard asymptotic scale:
Def. Definition. A decreasing series \(g_k(N)\) with \(g_{k+1}(N)=0\left(g_k(N)\right)\) is called an asymptotic scale. The series $$ f(N) \sim c_0 g_0(N)+c_1 g_1(N)+c_2 g_2(N)+\ldots $$
is called an asymptotic expansion of \(f\). The expansion represents the collection of formulae
The standard scale is products of powers of \({N}, \log {N}\), iterated logs and exponentials.
Typically we use - only 2,3,4 of the term till this is small - use ~ drop unused terms - use \(O,o\) for specify the unused terms
Example: Asymptotics of linear recurs
Thm: Assume that rational GF \(f(z)/g(z)\) with \(f,g\) relatively prime and \(g(0)=0\) has unique pole \(1/\beta\) of smallest mod and the multiplicity of \(\beta\) is \(v\), then $$ \left[z^n\right] \frac{f(z)}{g(z)} \sim C \beta^n n^{\nu-1} \quad \text { where } \quad C=\nu \frac{(-\beta)^\nu f(1 / \beta)}{g^{(\nu)}(1 / \beta)} $$
Recall
Proof sketch $$ \sum_{0 \leq j<m_1} c_{1 j} n^i \beta_1^n+\sum_{0 \leq i<m_2} c_{2 j} n^j \beta_2^n+\ldots+\sum_{0 \leq i<m_r} c_{r j} n^j \beta_r^n $$
Largest term dominates.
- Poles of smallest modulus usually dominates.
- \(2^N+3^N\sim 2^N\)
- Easy to extend to cover multiple poles in neighborhood of pole of smallest modulus.
Example
Example from earlier lectures. \(a_n=5 a_{n-1}-6 a_{n-2}\) for \(n \geq 2\) with \(a_0=0\) and \(a_1=1\)
Make recurrence valid for all \(n\). $$ \begin{gathered} a_n=5 a_{n-1}-6 a_{n-2}+\delta_{n 1} \ A(z)=5 z A(z)-6 z^2 A(z)+z \end{gathered} $$
Multiply by \(z^n\) and sum on \(n\). Solve. $$ A(z)=\frac{z}{1-5 z+6 z^2} $$
Smallest root of denominator is \(1 / 3\). $$ a_n \sim 3^n \quad C=1 \frac{(-3)(1 / 3)}{-5+12 / 3}=1 $$
Fundamental asym expansion
are immediate from Taylor Theorem, as \(x\to 0\).
- Exponential. $$ e{x}=1+x+\frac{x2}{2}+\frac{x3}{6}+O\left(x4\right) $$
- Logarithm. $$ \ln (1+x)=x-\frac{x2}{2}+\frac{x3}{3}+O\left(x^4\right) $$
- Binomial. $$ (1+x)^n=1+kx+\binom k2 x^2+\binom k3 x3+O(x4)$$
- geometric. $$ \frac{1}{1-x}=1+x+x2+x3+O\left(x^4\right) $$
Substitute \(N:=1/N\) to get for \(n\to\infty\).
- Exponential. $$ e^{1 / N}=1+\frac{1}{N}+\frac{1}{2 N^2}+\frac{1}{6 N2}+\alpha\left(\frac{1}{N2}\right) $$
- Logarithm. $$ \ln \left(1+\frac{1}{N}\right)=\frac{1}{N}-\frac{1}{2 N^2}+\frac{1}{3 N^3}+\alpha\left( \frac{1}{N^2}\right) $$
- Binomial. $$ (1+1/N)^k=1+\frac kN+\binom k2 \frac 1{x^2}+\binom k3 \frac1{x^3}+O\left(\frac 1{x^4}\right) $$
- geometric. $$ \frac{1}{N-1}=\frac{1}{N}+\frac{1}{N2}+\frac{1}{N3}+O\left(\frac{1}{N^4}\right) $$
Exercise:
(1) \(\ln \left(1+\frac{1}{N}\right)+\ln \left(1-\frac{1}{N}\right) \text { to } O\left(1 / N^3\right)\)
- \(-1/2N^2+O(1/N^3)\)
(2) \(\ln \left(1+\frac{1}{N}\right)-\ln \left(1-\frac{1}{N}\right)\) to \(O\left(1 / N^3\right)\)
- \(O(1/N^3)+2/ N\)