Skip to content

Manipulating Expansions

Goal: Develop expansion on the standard scale for any given expression.

\[ \frac{1}{N^2+N} \quad \frac{H_N}{\ln (N+1)} \quad e^{H_N} \quad\left(1-\frac{1}{N}\right)^N \quad\left(H_N\right)^2 \quad\binom{2N}N \]

Technique:

  • simplification
  • substitution
  • factoring
  • multiplication
  • division
  • composition
  • exp/log

Reason: Facilitate comparisons for diff equations, simplify computations.

Manipulating asymptotic Expansions:

Simplification. An asymptotic series is only as good as \(O\) term. Discard smaller terms.

Example

$\ln N+\gamma+O(1) $(×), \(\ln N+O(1) \quad \checkmark\)

Substitution. Change variables in a known expansion.

Example

\[ \begin{array}{ll} \text { Taylor series } & \ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+O\left(x^4\right) \quad \text { as } x \rightarrow 0 \\ \text { Substitute } x=1 / N & \left.\ln \left(1+\frac{1}{N}\right)=\frac{1}{N}-\frac{1}{2 N^2}+\frac{1}{3 N^3}+O\left(\frac{1}{N^4}\right)\right) \quad \text { as } N \rightarrow \infty \end{array} \]

Factoring. Estimate the leading term, factor it out, expand the rest.

Example

\[ \begin{aligned} \frac{1}{N^2+N} & \\ & =\frac{1}{N^2} \frac{1}{1+1 / N} \\ & =\frac{1}{N^2}\left(1-\frac{1}{N}+O\left(\frac{1}{N^2}\right)\right) \\ & =\frac{1}{N^2}-\frac{1}{N^3}+O\left(\frac{1}{N^4}\right)\end{aligned} \]

Multiplication. Do term-by-term multiplication, simplify, collect terms.

\[ \begin{aligned} \left(H_N\right)^2= & \left(\ln N+\gamma+O\left(\frac{1}{N}\right)\right)\left(\ln N+\gamma+O\left(\frac{1}{N}\right)\right) \\ = & \left((\ln N)^2+\gamma \ln N+O\left(\frac{\log N}{N}\right)\right) \\ & +\left(\gamma \ln N+\gamma^2+O\left(\frac{1}{N}\right)\right) \\ & +\left(O\left(\frac{\log N}{N}\right)+O\left(\frac{1}{N}\right)+O\left(\frac{1}{N^2}\right)\right)\\ &=(\ln N)^2+2\gamma\ln N + \gamma ^2 +O(\log N/N) \end{aligned} \]

Division. Expand, factor denominator, expand \(1 /(1-x)\), multiply.

\[ \begin{aligned} \frac{H_N}{\ln (N+1)} & \\ & =\frac{\ln N+\gamma+O\left(\frac{1}{N}\right)}{\ln N+O\left(\frac{1}{N}\right)} \\ & =\frac{1+\frac{\gamma}{\ln N}+O\left(\frac{1}{N}\right) } {1+O\left(\frac{1}{N}\right)} \quad(\text{Note: } O(1/N\log N)\sim O(1/N)) \\ & =\left(1+\frac{\gamma}{\ln N}+O\left(\frac{1}{N}\right)\right)\left(1+O\left(\frac{1}{N}\right)\right) \\ & =1+\frac{\gamma}{\ln N}+O\left(\frac{1}{N}\right) \end{aligned} \]

Composition. Substitute an expansion

Lemma: \(e^{O(1/N)}=1+O(1/N)\).

\[ \begin{aligned} e^{H_N} & \\ & =e^{\ln N+\gamma+O(1 / N)} \\ & =N e^\gamma e^{O(1 / N)} \\ & =N e^\gamma\left(1+O\left(\frac{1}{N}\right)+O\left(O\left(\frac{1}{N}\right)^2\right)\right. \\ & =N e^\gamma\left(1+O\left(\frac{1}{N}\right)\right) \\ & =N e^\gamma+O(1) \end{aligned} \]

Exp/Log. Start by writing \(f(x)=\exp\log f(x)\)

\[ \begin{aligned} \left(1-\frac{1}{N}\right)^N & \\ & =\exp \left\{\ln \left(\left(1-\frac{1}{N}\right)^N\right)\right\} \\ & =\exp \left\{N \ln \left(1-\frac{1}{N}\right)\right\} \\ & =\exp \left\{N\left(-\frac{1}{N}+O\left(\frac{1}{N^2}\right)\right)\right\} \\ & =\exp \left\{-1+O\left(\frac{1}{N}\right)\right\} \\ & =1 / e+O\left(\frac{1}{N}\right) \end{aligned} \]

Exercises

  1. Develop asymptotic approxs for \(\ln (N-2)\) to \(O\left(1 / N^2\right)\).

    • Changing \(\ln(N-2)=\ln(1+(N-3))\) will do.
    \[ \begin{aligned} & =\ln N+\ln \left(1-\frac{2}{N}\right) \\ & =\ln N-\frac{2}{N}+O\left(\frac{1}{N^2}\right) \end{aligned} \]
  2. \(\left(H_N\right)^2\) to \(O(1 / N)\)

    \[ \begin{aligned} \left(H_N\right)^2 & =\left(\ln N+\gamma+\frac{1}{2 N}+O\left(\frac{1}{N^2}\right)\right)\left(\ln N+\gamma+\frac{1}{2 N}+O\left(\frac{1}{N^2}\right)\right) \\ & =(\ln N)^2+2 \gamma \ln N+\gamma^2+\frac{\ln N}{N}+O\left(\frac{1}{N}\right) \end{aligned} \]