Bivariate Asymptotics
Sometimes it's needed for 2 parameters.
- size and cost
Challenges:
- asymptotics depends on relative values of variables
- may need to approximate sums over whole range of relative values.
Example 1: Binomial distribution \(\quad \frac{1}{4^N}{2N\choose N-K}\).
- \(\sim \frac{1}{\sqrt{\pi N}}\) for \(k=0\)
- exponentially small for \(k\) close to \(N\)
Example 2: Q distribution \(N! \over (N-k)!N^k\) - \(\sim 1\) for \(k=0\) - exponentially small for \(k\) close to \(N\).
Q-distribution
With Stirling approx. we have \(\ln N !=\left(N+\frac{1}{2}\right) \ln N-N+\ln \sqrt{2 \pi}+O\left(\frac{1}{N}\right)\). Then \(\frac{N !}{(N-k) ! N^k}=\exp (\ln N !-\ln (N-k) !-k \ln N)\) yields
Expand by \(\ln \left(1-\frac{k}{N}\right)=-\frac{k}{N}-\frac{k^2}{2 N^2}+O\left(\frac{k^3}{N^3}\right)\), yields
Binomial Distribution
\({2 N \choose N-k}=\exp (\ln (2 N !)-\ln (N-k) !-\ln (N+k) !)\)
Using Stirling's approximation, yielding
Rearrange them
Expand \(\ln(1-k/N)\) and \(\ln (1+k/N)\) yields
That is,
Fundamental Bivariate approximations
Name | Kind | uniform | central |
---|---|---|---|
normal | \(2N \choose N-k\) | \(\frac{e^{-R^2 / N}}{\sqrt{\pi N}}+O\left(\frac{1}{N^{3 / 2}}\right)\) | \(\frac{\mathrm{e}^{-k^2 / N}}{\sqrt{\pi N}}\left(1+O\left(\frac{1}{N}\right)+O\left(\frac{k^4}{N^3}\right)\right)\) |
Poisson | \({N \choose k}\left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\) | \(\frac{\lambda^k \mathrm{e}^{-\lambda}}{k !}+o(1)\) | \(\frac{\lambda^k e^{-\lambda}}{k !}\left(1+O\left(\frac{1}{N}\right)+O\left(\frac{k}{N}\right)\right)\) |
Q | \(\frac{N !}{(N-k) ! N^k}\) | \(e^{-k^2 /(2 N)}+O\left(\frac{1}{\sqrt{N}}\right)\) | \(\mathrm{e}^{-k^2 /(2 N)}\left(1+O\left(\frac{k}{N}\right)+O\left(\frac{k^3}{N^2}\right)\right)\) |
Approximating sums via Bivariate asymptotics
Example: Q function
Observatiens:
- nearly 1 for small k
- negligable for large \(k\)
- bivariate asymptotics needed to give different estimates in different rasges.
Laplace Method. To approximate a sum:
- Restrict the range to an area that contains the largest summands.
- find approximate to summand
- extend the range by bounding the tails to get a simpler sum
Restrict the range to an area that contains the largest summands.
Take \(k_0=o\left(N^{2 /3}\right)\) to make tail exponentially small.
Approximate the summand, yielding
Extending the range by bounding the tails to get simpler sum
Approximate the new sum using an integral
Exercises
Exercise 4.9 if \(\alpha<\beta\), show that \(\alpha^N\) is exponentially amall relative to \(\beta^N\). For \(\beta= 1.2\) and \(\alpha=1.1\), find the absolute and relative error whea \(\alpha^N+\beta^N\) is approximated by \(\beta^N\), for \(N=10\) and \(N=100\).
We can do this by finding the ratio: \(\beta^N/\alpha^N=0\) as \(N\to \infty\).
In[2]:= RealVal[n_] := 1.1^n + 1.2^n
In[3]:= ApproxFunc[n_] := 1.2^n
In[4]:= Ratio[n_] := Abs[RealVal[n] - ApproxFunc[n]]/RealVal[n]
In[5]:= Ratio[10]
Out[5]= 0.295231
In[6]:= Ratio[100]
Out[6]= 0.000166369
Exercise 4.71 Show that $$ P(N)=\sum_{k \geq 0} \frac{(N-k)^k(N-k) !}{N !}=\sqrt{\pi N / 2}+O(1) $$
The bounding changed to \(e^{-k^2/2(N-k)}.\) Integrate to get the same result.