Skip to content

Bivariate Asymptotics

Sometimes it's needed for 2 parameters.

  • size and cost

Challenges:

  • asymptotics depends on relative values of variables
  • may need to approximate sums over whole range of relative values.

Example 1: Binomial distribution \(\quad \frac{1}{4^N}{2N\choose N-K}\).

  • \(\sim \frac{1}{\sqrt{\pi N}}\) for \(k=0\)
  • exponentially small for \(k\) close to \(N\)

Example 2: Q distribution \(N! \over (N-k)!N^k\) - \(\sim 1\) for \(k=0\) - exponentially small for \(k\) close to \(N\).

Img

Img

Q-distribution

With Stirling approx. we have \(\ln N !=\left(N+\frac{1}{2}\right) \ln N-N+\ln \sqrt{2 \pi}+O\left(\frac{1}{N}\right)\). Then \(\frac{N !}{(N-k) ! N^k}=\exp (\ln N !-\ln (N-k) !-k \ln N)\) yields

\[ \begin{aligned}= & \exp \left(\left(N+\frac{1}{2}\right) \ln N-N+\ln \sqrt{2 \pi}\right. \\ & \left.\quad-\left(N-k+\frac{1}{2}\right) \ln (N-k)+N-k-\ln \sqrt{2 \pi}-k \ln N+O\left(\frac{1}{N}\right)\right) \\ = & \exp \left(-\left(N-k+\frac{1}{2}\right) \ln \left(1-\frac{k}{N}\right)-k+O\left(\frac{1}{N}\right)\right)\end{aligned} \]

Expand by \(\ln \left(1-\frac{k}{N}\right)=-\frac{k}{N}-\frac{k^2}{2 N^2}+O\left(\frac{k^3}{N^3}\right)\), yields

\[ \begin{aligned} & =\exp \left(k+\frac{k^2}{2 N}-\frac{k^2}{N}-k+O\left(\frac{k^3}{N^2}\right)+O\left(\frac{k}{N}\right)\right) \\ & =e^{-k^2 / 2 N}\left(1+O\left(\frac{k^3}{N^2}\right)+O\left(\frac{k}{N}\right)\right)\end{aligned} \]

Binomial Distribution

\({2 N \choose N-k}=\exp (\ln (2 N !)-\ln (N-k) !-\ln (N+k) !)\)

Using Stirling's approximation, yielding

\[ \begin{aligned} = & \exp \left(\left(2 N+\frac{1}{2}\right) \ln (2 N)-2 N+\ln \sqrt{2 \pi}+O(1 / N)\right. \\ & -\left(N-k+\frac{1}{2}\right) \ln (N-k)-N+k-\ln \sqrt{2 \pi}+O(1 / N) \\ & \left.-\left(N+k+\frac{1}{2}\right) \ln (N+k)-N-k-\ln \sqrt{2 \pi}+O(1 / N)\right) \\ = & \exp \left((2 N) \ln 2-\ln \sqrt{\pi N}-\left(N-k+\frac{1}{2}\right) \ln \left(1-\frac{k}{N}\right)-\left(N+k+\frac{1}{2}\right) \ln \left(1+\frac{k}{N}\right)+O(1 / N)\right) \end{aligned} \]

Rearrange them

\[ \begin{aligned} & =\exp (2 N) \ln 2-\ln \sqrt{\pi N} \\ & \left.\quad-\left(N+\frac{1}{2}\right)\left(\ln \left(1-\frac{k}{N}\right)+\ln \left(1+\frac{k}{N}\right)\right)+k\left(\ln \left(1-\frac{k}{N}\right)-\ln \left(1+\frac{k}{N}\right)\right)+O(1 / N)\right) \end{aligned} \]

Expand \(\ln(1-k/N)\) and \(\ln (1+k/N)\) yields

\[ =\exp \left((2 N) \ln 2-\ln \sqrt{\pi N}-\frac{k^2}{N}+O\left(\frac{k^4}{N^3}\right)+O\left(\frac{1}{N}\right)\right) \]

That is,

\[ \frac{e^{-k^2 / N}}{\sqrt{\pi N}}\left(1+O\left(\frac{k^4}{N^3}\right)+O\left(\frac{1}{N}\right)\right) \]

Fundamental Bivariate approximations

Name Kind uniform central
normal \(2N \choose N-k\) \(\frac{e^{-R^2 / N}}{\sqrt{\pi N}}+O\left(\frac{1}{N^{3 / 2}}\right)\) \(\frac{\mathrm{e}^{-k^2 / N}}{\sqrt{\pi N}}\left(1+O\left(\frac{1}{N}\right)+O\left(\frac{k^4}{N^3}\right)\right)\)
Poisson \({N \choose k}\left(\frac{\lambda}{N}\right)^k\left(1-\frac{\lambda}{N}\right)^{N-k}\) \(\frac{\lambda^k \mathrm{e}^{-\lambda}}{k !}+o(1)\) \(\frac{\lambda^k e^{-\lambda}}{k !}\left(1+O\left(\frac{1}{N}\right)+O\left(\frac{k}{N}\right)\right)\)
Q \(\frac{N !}{(N-k) ! N^k}\) \(e^{-k^2 /(2 N)}+O\left(\frac{1}{\sqrt{N}}\right)\) \(\mathrm{e}^{-k^2 /(2 N)}\left(1+O\left(\frac{k}{N}\right)+O\left(\frac{k^3}{N^2}\right)\right)\)

Approximating sums via Bivariate asymptotics

Example: Q function

\[ Q(N) := \sum_{1 \leq k \leq N} \frac{N !}{(N-k) ! N^k} \]

Observatiens:

  • nearly 1 for small k
  • negligable for large \(k\)
  • bivariate asymptotics needed to give different estimates in different rasges.

Laplace Method. To approximate a sum:

  • Restrict the range to an area that contains the largest summands.
  • find approximate to summand
  • extend the range by bounding the tails to get a simpler sum

Restrict the range to an area that contains the largest summands.

\[ Q(N)=\sum_{1 \leq k \leq h_0} \frac{N !}{(N-k) ! N^k}+\sum_{k_0<k \leq N} \frac{N !}{(N-k) ! N^k} \]

Take \(k_0=o\left(N^{2 /3}\right)\) to make tail exponentially small.

Approximate the summand, yielding

\[ \sum_{1 \leq k \leq h_0} \frac{N !}{(N-k) ! N^k} \sim \sum_{1 \leq k \leq k_0} e^{-k^2 / 2 N} \]

Extending the range by bounding the tails to get simpler sum

\[ Q(N) \sim \sum_{k \geq 1} e^{-k^2 / 2 N} \]

Approximate the new sum using an integral

\[ Q(N) \sim \sqrt{N} \int_0^{\infty} e^{-x^2 / 2} d x=\sqrt{\pi N / 2} \]

Exercises

Exercise 4.9 if \(\alpha<\beta\), show that \(\alpha^N\) is exponentially amall relative to \(\beta^N\). For \(\beta= 1.2\) and \(\alpha=1.1\), find the absolute and relative error whea \(\alpha^N+\beta^N\) is approximated by \(\beta^N\), for \(N=10\) and \(N=100\).

We can do this by finding the ratio: \(\beta^N/\alpha^N=0\) as \(N\to \infty\).

In[2]:= RealVal[n_] := 1.1^n + 1.2^n

In[3]:= ApproxFunc[n_] := 1.2^n

In[4]:= Ratio[n_] := Abs[RealVal[n] - ApproxFunc[n]]/RealVal[n]

In[5]:= Ratio[10]

Out[5]= 0.295231

In[6]:= Ratio[100]

Out[6]= 0.000166369

Exercise 4.71 Show that $$ P(N)=\sum_{k \geq 0} \frac{(N-k)^k(N-k) !}{N !}=\sqrt{\pi N / 2}+O(1) $$

The bounding changed to \(e^{-k^2/2(N-k)}.\) Integrate to get the same result.