Skip to content

Exercises

Unable to display PDF file. Download instead.

\[ \newcommand{\flr}[1]{\left\lfloor #1 \right\rfloor} \]
\[ \newcommand{\cil}[1]{\left\lceil #1 \right\rceil} \]

Notes on Text

Basic Definitions

  1. Definitions on floors and ceilings:
    1. \(\lfloor x\rfloor=\) the greatest integer less than or equal to \(x\);
    2. \(\lceil x\rceil=\) the least integer greater than or equal to \(x\).
  2. Floors and ceilings are shorthand for inequalities
    1. \(\lfloor x\rfloor=n \iff n \leqslant x<n+1\) (For a fixed \(n\), \(x\in [n, n+1)\))
    2. \(\flr{x}=n \iff x-1 < n\leq x\)(For a number \(x\), the val of \(\flr x\) is \((x-1,x]\)).
    3. \([x]=n \quad \Longleftrightarrow \quad n-1<x \leqslant n\)
    4. \(\lceil x\rceil=n \quad \Longleftrightarrow \quad x \leqslant n<x+1\)
  3. Some cute property
    1. \(\lfloor x+n\rfloor=\lfloor x\rfloor+n, \quad\) integer \(n\).
  4. Definition on Fractional part: \(\{x\}=x-\lfloor x\rfloor\).

Floors and Ceilings Applications

  1. Theorem on applying floor functions
    1. Theorem. Let \(f(x)\) be any continuous, monotonically increasing function s.t. \(f(x)=\) integer \(\Longrightarrow x=\) integer, then
      • \(\lfloor f(x)\rfloor=\lfloor f(\lfloor x\rfloor)\rfloor\)
      • \(\lceil f(x)\rceil=\lceil f(\lceil x\rceil)\rceil\)
    2. Corollary. \(\left\lfloor\frac{x+m}{n}\right\rfloor=\left\lfloor\frac{\lfloor x\rfloor+m}{n}\right\rfloor\), \(\left\lceil\frac{x+m}{n}\right\rceil=\left\lceil\frac{\lceil x\rceil+m}{n}\right\rceil\)
  2. Range counting
    1. \([\alpha ... \beta] \quad\lfloor\beta\rfloor-\lceil\alpha\rceil+1 \quad \alpha \leqslant \beta\),
    2. \(\lceil\alpha \ldots \beta) \quad\lceil\beta\rceil-\lceil\alpha\rceil \quad \alpha \leqslant \beta\),
    3. \((\alpha . . \beta] \quad\lfloor\beta\rfloor-\lfloor\alpha\rfloor \quad \alpha \leqslant \beta\),
    4. \((\alpha . . \beta) \quad\lceil\beta\rceil-\lfloor\alpha\rfloor-1 \quad \alpha<\beta\).

Floors and Ceilings Sums

\[ \sum_{0 \leqslant k<m}\left\lfloor\frac{n k+x}{m}\right\rfloor=d\left\lfloor\frac{x}{d}\right\rfloor+\frac{m-1}{2} n+\frac{d-m}{2} \]

Mod: The binary relation

  1. Definition on Mod: \(x \bmod y=x-y\lfloor x / y\rfloor, \quad\) for \(y \neq 0\)
  2. Basic property. \(c(x \bmod y)=(c x) \bmod (c y)\)