Basic Concepts
Floors and Ceilings
Definition
- \(\lfloor x \rfloor\) = the greatest integer less than or equal to \(x\).
- \(\lceil x \rceil\) = the least integer greater than or equal to \(x\).
Basic Properties
- Inequality:
- \(x-1 < \lfloor x \rfloor \leq x \leq \lceil x \rceil < x+1\).
- Negation:
- \(\lceil -x \rceil = -\lfloor x \rfloor\), \(-\lfloor -x \rfloor = -\lceil x\rceil\).
- Convert:
- \(\lfloor x \rfloor = n \iff n \leq x < n+1\) (with respect to \(x\)).
- \(\lfloor x \rfloor = n \iff x-1 \leq n < x\) (with respect to \(n\)).
- \(\lceil x \rceil = n \iff n-1 < x \leq n\) (with respect to \(x\)).
- \(\lceil x \rceil = n \iff x \leq n < x+1\) (with respect to \(n\)).
- Moving Integers:
- For integer \(n\), \(\lfloor x+n \rfloor = \lfloor x \rfloor + n\).
Example: An Identity
Prove that \(\lfloor \sqrt{\lfloor x \rfloor} \rfloor = \lfloor \sqrt{x} \rfloor\).
- Let \(m=\lfloor \sqrt{\lfloor x \rfloor} \rfloor\).
- Range of \(m\): \(m \leq \sqrt{\lfloor x \rfloor} < m+1\).
- Squaring to get the answer.
Example: Switching Counting Number
Prove that \(\lfloor f(x) \rfloor = f(\lfloor x \rfloor)\).
- If \(x=\lfloor x \rfloor\), trivial.
- Otherwise \(x>\lfloor x \rfloor \implies f(x)>f(\lfloor x \rfloor)\).
- Consider \(f(\lfloor x \rfloor) < \lfloor f( x )\rfloor\).
- Continuous function, implies a number \(y\) s.t. \(x \leq y < \lceil x \rceil\) and \(f(y) = \lceil f(x) \rceil\).
- By the special property of \(x\), \(y\) is an integer, making them equal.
Same problem: Continuous monotonic decreasing, what's that?
Counting the Integer Points
Count the integer points on a number line.
- If \(a, b \in \mathbb Z\), integer points in \([a, b]\) is \(b-a+1\).
- More general cases:
- \([\alpha, \beta] \quad \lfloor \beta \rfloor - \lceil \alpha \rceil + 1\)
- \((\alpha, \beta] \quad \lfloor \beta \rfloor - \lfloor \alpha \rfloor\)
- \([\alpha, \beta) \quad \lfloor \beta \rfloor - \lceil \alpha \rceil\)
- \((\alpha, \beta) \quad \lceil \beta \rceil - \lfloor \alpha \rfloor - 1\)
Helpful when handling summations by counting.
Example: Computing a Sum
Compute \(W = \sum_{i=1}^{1000} [\lceil \sqrt[3]{n} \rceil | n]\).
- Define \(k = \sqrt[3]{n}\), getting \(k \mid n, 1 \leq n \leq 1000\).
- Range for \(k\): \(k \leq \sqrt[3]{n} < k+1\).
- \(k \mid n\) means there is an \(m\) so that \(n = km\).
- Expression becomes \(1+\sum_{k, m} [k^3 \leq km \leq (k+1)^3][1 \leq k < 10]\).
Compute \(W = \sum_{i=1}^{K} [\lceil \sqrt[3]{n} \rceil | n]\), \(K \in \Z\).
- Consider \(\sum_m[k^3 \leq Km \leq N]\).
- This part becomes \(\sum_m [m \in [k^2..N/K]]\).
- The estimation will be \(3/2N^{2/3}+O(N^{1/3})\).
Example: The Spectra Example
The spectrum of a real number \(\alpha\) is an infinite multiset of integers: $$ \text{Spec}(\alpha) = {\lceil \alpha \rceil, \lceil 2\alpha \rceil, \cdots} $$
- Define \(N(\alpha, n) = \sum_{k>0}[\lfloor k\alpha \rfloor \leq n]\).
- \(N(\alpha, n) = \lceil (n+1)/\alpha \rceil - 1\).
- Prove \(\lceil n+1/\sqrt2 \rceil - 1 + \lceil n+1/2+\sqrt2 \rceil - 1 = n\).
- Useful equality: \(a \leq b \implies a < b-1\) for floor and ceiling functions.