Mod: The Binary Op
Mod: Definition
We may rewrite the quotient and remainder as follows:
If \(n\) is an integer, then $$ n = m\lfloor{n/m}\rfloor + n \bmod m $$ for \(y \neq 0\).
Generalized to negative integers:
- \(5 \bmod 3 = 5 - 3\lfloor{5/3}\rfloor = 2\)
- \(5 \bmod -3 = 5 - (-3)\lfloor{5/-3}\rfloor = -1\)
- \(-5 \bmod 3 = -5 - (-3)\lfloor{-5/3}\rfloor = 1\)
- \(-5 \bmod -3 = -5 - (-3)\lfloor{-5/-3}\rfloor = -2\)
Observation:
- In any case, the result number is exactly in between two numbers.
- Special definition: if \(y = 0\), then \(x \bmod 0 = x\).
- Preserves the property that \(x\) and \(y\) always differ from \(x\) by a multiple of \(y\).
Another Notation: Mumble
We have \(n \bmod m = n - \lfloor{n/m}\rfloor \cdot m\).
Alternative definition: mumble. $$ x \operatorname{mumble} y = y\lceil{x/y}\rceil - x $$
Properties
- Distributive:\(c(x\bmod y) = (cx) \bmod (cy)\) for $c, x, y \in \R $.
- Reason:\(c(x\bmod y) = c(x - y\lfloor{x/y}\rfloor) = cx - cy\lfloor{cx/cy}\rfloor = (cx) \bmod (cy)\).
Example: Even Partition Problem (EPP)
Problem: Partition \(n\) things into \(m\) groups as equally as possible.
- Example:
- \(\begin{matrix}1 & 9 & 17 & 24 & 31 \\ 2 & 10 & 18 & 25 & 32 \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{matrix}\)
-
Final row has only 5 elements; can we do better?
-
Procedure:
- Distribute \(n\) things into \(m\) groups as evenly as possible.
- If \(m > 0\), put \(\lceil{n/m}\rceil\) things into one group.
-
Use this procedure recursively with remaining \(n' = n - \lceil{n/m}\rceil\) and \(m' = m - 1\).
-
Closed Form:
- \(n = \lfloor{n/m}\rfloor + \lfloor{n+1/m}\rfloor + \ldots + \lfloor{n+(m-1)/m}\rfloor\).
Example: A Weird Sum (WS)
Find \(\sum_{0\leq k \leq n} \lfloor{\sqrt{k}}\rfloor\) where \(n\) is a perfect square.
Solution: $$ \sum_{0\leq k \leq n} \lceil{\sqrt{k}}\rceil = \sum_{k, m\geq 0} m[k<n][m=\lceil{k}\rceil] $$
- Calculate the total number using falling sums.
Example: An Integrated Example (IE)
Find the closed form for \(\sum_{0\leq k<m} \lfloor{nk+x/m}\rfloor\) for integer \(m > 0\), integer \(n\).
- That is: \(\sum_{0\leq k<m} \lfloor{nk+x/m}\rfloor = d\lfloor{x/d}\rfloor + \frac{m-1}{2}n + \frac{d-m}{2}\)where \(d = \operatorname{gcd}(m, n)\).
- Symmetrically, \(\sum_{0\leq k<n} \lfloor{mk+x/n}\rfloor = d\lfloor{x/d}\rfloor + \frac{(m-1)(n-1)}{2} + \frac{d-1}{2}\).