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Section 1

Basic concepts
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Floors and Ceilings
Definition
• ⌊x⌋ = the greatest integer less than or equal to x.
• ⌈x⌉ = the least integer greater than or equal to x.
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Figure: Floor and ceiling
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Basic Properties

• Inequality: x− 1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x+ 1.
• Negation: ⌈−x⌉ = −⌊x⌋, ⌊−x⌋ = −⌈x⌉.
• Convert:

• ⌊x⌋ = n ⇐⇒

n ≤ x < n+ 1

(with respect to x);
• ⌊x⌋ = n ⇐⇒

x− 1 ≤ n < x

(with respect to n);
• ⌈x⌉ = n ⇐⇒

n− 1 < x ≤ n

(with respect to x);
• ⌈x⌉ = n ⇐⇒

x ≤ n < x+ 1

(with respect to n);
• Moving integers: For integer n, ⌊x+ n⌋ = ⌊x⌋+ n.
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Example. An identity

Example
Prove that ⌊

√
⌊x⌋⌋ = ⌊

√
x⌋.

• Let m = ⌊
√
⌊x⌋⌋. What is the range of m?

• m ≤
√
⌊x⌋ < m+ 1.

• Squaring to get the answer.
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Example. Switching counting number

Example
Let f(x) be any cont. mono. increasing func. with prop. that
f(x) = integer =⇒ x = integer, prove that ⌊f(x)⌋ = f(⌊x⌋),
same as the ceiling.

• If x = ⌊x⌋, trivial.
• Otherwise x > ⌊x⌋ =⇒ f(x) > f(⌊x⌋). What about f(⌊x⌋)

and ⌊f(x)⌋?
• Assume this is true: f(⌊x⌋) < ⌊f(x)⌋, continuous,
• must be a number y s.t. x ≤ y < ⌈x⌉ and f(y) = ⌈f(x)⌉. By

the special property of x
• y integer, no number between x ≤ y < ⌈x⌉, hence they are

equal.
Same problem: cont. mono. decreasing, what’s that?
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Counting the Integer Points

Count the integer points on a number line.
• if a, b ∈ Z, integer point in [a, b] is b− a+ 1.
• More general case

• [α, β]

⌊β⌋ − ⌈α⌉+ 1

• (α, β]

⌊β⌋ − ⌊α⌋

• [α, β)

⌊β⌋ − ⌈α⌉

• (α, β)

⌈β⌉ − ⌊α⌋ − 1

Helpful when handling summations by counting.
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Counting the Integer Points

Count the integer points on a number line.
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Example. Computing a sum

Example
Compute

W =

1000∑
i=1

[
⌈

3
√
n
⌉
|n]

• Make a new one name for k = 3
√
n, getting

k | n, 1 ≤ n ≤ 1000.
• The range for k is k ≤ 3

√
n < k + 1

• k|n means that there is a m so that n = km.
• then becomes 1 +

∑
k,m[k3 ≤ km ≤ (k + 1)3][1 ≤ k < 10].
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Example cont’d. Computing a sum

Example
Compute

W =

K∑
i=1

[
⌈

3
√
n
⌉
|n],K ∈ Z.

• We should care about
∑

m[k3 ≤ Km ≤ N ].
• this part become

∑
m[m ∈ [k2..N/K]].

• the estimation will be 3/2N2/3 +O(N1/3).
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Example cont’d. Computing a sum
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Example. The Spectra Example
Example
The spectrum of a real number α to be an infinite multiset of
integers. That is

Spec(α) = {⌈α⌉ , ⌈2α⌉ , · · · }

We can prove that (1) no two spectrum are equal; (2)
Spec(2) ∪ Spec(2 +

√
2) = Z.

• We define N(α, n) =
∑

k>0[⌊kα⌋ ≤ n].
• which is ⌈(n+ 1)/α⌉ − 1.
• proving

⌈
n+ 1/

√
2
⌉
− 1 +

⌈
n+ 1/2 +

√
2
⌉
− 1 = n.

This equality will be helpful:

a ≤ b =⇒ a < b− 1 for floors and ceiling func.
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Section 2

Solving Recurrences
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The first example: Knuth Number(KN)

We have the following example:

K0 = 1;

Kn+1 = 1 + min(2K⌊n/2⌋, 3K⌊n/3⌋).

Prove or disproof that for n ≥ 0,Kn ≥ n.
• List small vals for k.
• Proof by induction.
• Base case: K = 0 satisfy the condition.
• Induction
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KN: Induction Step

K0 = 1;

Kn+1 = 1 + min(2K⌊n/2⌋, 3K⌊n/3⌋).

• Assume the inequality hold for all vals up to some non
negative vals n,
• Goal: show that Kn+1 ≥ n+ 1.
• Given Kn+1 = 1 + min(2K⌊n/2⌋, 3K⌊n/3⌋), and
2K⌊n/2⌋ ≥ 2 ⌊n/2⌋ , 3K⌊n/3⌋ ≥ 3 ⌊n/3⌋(by hypothesis)
• But 2 ⌊n/2⌋ can be as small as n− 1, 3 ⌊n/3⌋ can be as small

as n− 2, breaking the induction.
• Or really? This case jumps fast.
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KN: The special case

We can prove by contradiction:
• Assume we can find a value m s.t. Km ≤ m

• finding m’s origin, say m = n′ + 1

• requires K⌊n′/2⌋ ≤ ⌊n′/2⌋, and K⌊n′/3⌋ ≤ ⌊n′/3⌋.
• This implies K0 ≤ 0, but K0 = 1, contradiction.
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About Math. Induction

In trying to devise a proof by
mathematical induction, you
may fail for two opposite rea-
sons. You may fail because you
try to prove too much: Your
P (n) is too heavy a burden.
Yet you may also fail because
you try to prove too little: Your
P (n) is too weak a support.
In general, you have to bal-
ance the statement of your the-
orem so that the support is just
enough for the burden.”

Figure: G. Polya
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Jospher’s Problem Generlized(JPG)

Idea: Whenever a person is passed over, give it a new number.
Demonstrate:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22

23 24 25
26 27
28
29
30
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JPG: Findings
1 2 31 4 5 62 7 8 93 10
11 124 13 14 155 16 17
186 19 20 217 22

23 248 25
26 279

28
29
3010

What will the id become?
• 1, 2 become

n+ 1, n+ 2

;
• 3 executed;
• 4, 5 become

n+ 3, n+ 4

;
• 6 is executed;
• 3k + 1, 3k + 2 will become

n+ 2k + 1, n+ 2k + 2

;
• 3k + 3 is executed.
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JPG: Findings
1 2 31 4 5 62 7 8 93 10
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What will the id become?
• 1, 2 become n+ 1, n+ 2;
• 3 executed;
• 4, 5 become n+ 3, n+ 4;
• 6 is executed;
• 3k + 1, 3k + 2 will become n+ 2k + 1, n+ 2k + 2;
• 3k + 3 is executed.
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JPG: Findings

1 2 31 4 5 62 7 8 93 10
11 124 13 14 155 16 17
186 19 20 217 22

23 248 25
26 279

28
29
3010

• Counting is consistent, no jumping over someone.
• The k-th person eliminated ends up with number 3k.
• To find the survivor = figure out the original number 3N .



Basic concepts Solving Recurrences Mod: The binary Op

JPG: Findings

1 2 31 4 5 62 7 8 93 10
11 124 13 14 155 16 17
186 19 20 217 22

23 248 25
26 279

28
29
3010

• What is 3N originally?
• N(N > n) has a form of N = n+ 2k + 1 or N = n+ 2k + 2,

in a single round.
• for two ks, getting k1 = (N − 1− n)/2, k2 = (N − 2− n)/2.
• = ⌊(N − n− 1)/2⌋.
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JPG: Findings

1 2 31 4 5 62 7 8 93 10
11 124 13 14 155 16 17
186 19 20 217 22

23 248 25
26 279

28
29
3010

An algorithm for this:
• Let N ← 3n;
• while N > n, let N ← ⌊(N − n− 1)/2⌋+N − n;
• Answer← N .
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JPG: Findings

1 2 31 4 5 62 7 8 93 10
11 124 13 14 155 16 17
186 19 20 217 22

23 248 25
26 279

28
29
3010

Simplifying this algorithm: like treating arithmetic series.
• Assign the numbers from largest to smallest
• yielding ⌈3/2D⌉.
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JPG: Findings

1 2 31 4 5 62 7 8 93 10
11 124 13 14 155 16 17
186 19 20 217 22

23 248 25
26 279

28
29
3010

Generalized: D = ⌈q/(q − 1)D⌉ for general qs, i.e. q-kill one.
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Section 3

Mod: The binary Op
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Mod: definition

We may rewrite the quotient and remainder as follows:
If n is an integer, then

n = m ⌊n/m⌋+ n mod m.

for y ̸= 0.
• generalize it to negative integers
• 5 mod 3 = 5− 3 ⌊5/3⌋ = 2.

• 5 mod −3 = 5− (−3) ⌊5/− 3⌋ = −1.
• −5 mod 3 = −5− (−3) ⌊−5/3⌋ = 1.

• −5 mod −3 = −5− (−3) ⌊−5/− 3⌋ = −2.
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Mod: definition

We may rewrite the quotient and remainder as follows:
If n is an integer, then

n = m ⌊n/m⌋+ n mod m.

for y ̸= 0.
• Observation: In any case the result number is exactly in

between 2 numbers.
• Special definition: if y = 0, then x mod 0 = x.
• preserves the property that x and y always differs from x by a

multiple of y.
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Another notation: Mumble

We have n mod m = n− ⌊n/m⌋m
Alternative definition: mumble.

xmumble y = y

⌈
x

y

⌉
− x
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Properties

• Distributive: c(x mod y) = (cx) mod (cy) for c, x, y ∈ R.
• reason: c(x mod y) = c(x− y ⌈x/y⌉) = cx− cy(⌊cx/cy⌋) =

(cx) mod (cy).
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Example: Even partition problem(EPP)

Problem: Partition n things into m groups as equally as possible.
An example:

1 9 17 25 33
2 10 18 26 34
3 11 19 27 35
4 12 20 28 36
5 13 21 29 37
6 14 22 30
7 15 23 31
8 16 24 32

• the final row has only 5 elems, can we do better?
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Example: Even partition problem(EPP)

Problem: Partition n things into m groups as equally as possible.
A evener example: An example:

1 9 17 24 31
2 10 18 25 32
3 11 19 26 33
4 12 20 27 34
5 13 21 28 35
6 14 22 29 36
7 15 23 30 37
8 16
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Example: Even partition problem(EPP)

Problem: Partition n things into m groups as equally as possible.
• Division: a row by row arrange not always good.
• it tells us how many lines to put

• Some of the short one put ⌈n/m⌉ columns, others put ⌊n/m⌋
cols.

• There will be exactly n mod m cols, and exactly
m− n mod m = nmumblemshort ones.
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Example: Even partition problem(EPP)
Problem: Partition n things into m groups as equally as possible.
Procedure:
• To distribute n things into m groups as even as possible,
• when m > 0, put ⌈n/m⌉ things into one group
• then use this procedure to recursively
• i.e. put put the remaining n′ = n− ⌈n−m⌉ things into
m′ = m− 1 groups.

Proof:
• Suppose that n = qm+ r

• If r = 0, We put ⌊n/m⌋ = q things into the first,
n′ = n− q,m′ = m− 1.
• If r > 0, put ⌊n/m⌋ = q + 1 into first group, leaving
n′ = n− q − 1 = qm′ + r − 1.
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Example: Even partition problem(EPP)
Problem: Partition n things into m groups as equally as possible.
A closed form for the formula?
• Effect: the quotient stays the same, but the remainder

decrease by 1.
• That is there are ⌈n/m⌉ things when k ≤ n mod m, and
⌊n/m⌋ things o.w.
• So the closed form is ⌈n− k + 1/m⌉.

Since we are arrange n elems, we have the following identity:

n =
⌊ n

m

⌋
+

⌊
n+ 1

m

⌋
+ · · ·+

⌊
n+ (m− 1)

m

⌋
Replace n by mx we get

mx = ⌊x⌋+
⌊
x+

1

m

⌋
+ · · ·+

⌊
x+

m− 1

m

⌋
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Example: A Weird Sum(WS)

Find ∑
0≤k≤n

⌊√
k
⌋

where a is a perfect square.
Solution: ∑

0≤k≤n

⌈√
k
⌉

=
∑

k,m≥0

m[k < n][m = ⌈k⌉]

=
∑

k,m≥0

m[k < n][m ≤
√
k < m+ 1]

Then we calculate the total number of this.
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Example: A Weird Sum(WS)
Find ∑

0≤k≤n

⌊√
k
⌋

where a is a perfect square.
Solution:

=
∑

k,m≥0

m[k < n][m ≤
√
k < m+ 1]

=
∑

k,m≥0

m[m ≤ k ≤ (m+ 1)2 ≤ a2]

=
∑
m≥0

m((m+ 1)2 −m2)[m+ 1 ≤ a]

=
∑

m≥0,m≤a

m(2m+ 1)

Oh, we can use falling sums!
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Example: A Weird Sum(WS)

Find ∑
0≤k≤n

⌊√
k
⌋

where a is a perfect square.
Solution:
That is

a∑
0

(2m2 + 3m1)δm

Using the integration rule, we get
2/3a(a− 1)(a− 2) + 3/2a(a− 1).
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Example: A Weird Sum(WS)

Find ∑
0≤k≤n

⌊√
k
⌋

where a is a perfect square.
Solution:
Removing the perfect square condition
• do the partition from [0..a2] and [a2..n].
• this will use O notation to express its increament.
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Example: an Integrated Example(IE)

Find the closed form for ∑
0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
We first look at some observations
• n = 1, yields

∑
0≤k<m ⌊(k + x)/m⌋, where we found at the

EPP problem.
• m = 1, this will be ⌊x⌋;
• m = 2, we look at ⌊x/2⌋+ ⌊(x+ n)/2⌋.

• n even, n/2 integer. ⌊x/2⌋+ ⌊(x+ n)/2⌋ = 2 ⌊x/2⌋+ n/2.
• n odd, (n− 1)/2 integer.
⌊x/2⌋+ (⌊(x+ 1)/2⌋+ (n− 1)/2) = ⌊x⌋+ (n− 1)/2.
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Example: an Integrated Example(IE)

Find the closed form for ∑
0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
Have a look at m = 3:
• n mod 3 = 0, n/3 and 2n/3 integers:⌊

x
3

⌋
+
⌊
x
3 + n

3

⌋
+
⌊
x
3 + 2n

3

⌋
= 3 ⌊x/3⌋+ n.

• n mod 3 = 1, n− 1/3 and 2n− 2/3 integers:⌊
x
3

⌋
+
⌊
x+1
3 + n−1

3

⌋
+

⌊
x+2
3 + 2n−2

3

⌋
= ⌊x⌋+ n− 1.

• n mod 3 = 2, n− 2/3 and 2n− 4/3 integers:⌊
x
3

⌋
+
⌊
x+2
3 + n−2

3

⌋
+

⌊
x+4
3 + 2n−4

3

⌋
= ⌊x⌋+ n− 1.
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Example: an Integrated Example(IE)

Find the closed form for ∑
0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
Look at n = 4,
• n mod 4 = 0, 4 ⌊x/4⌋+ 3n/2;
• n mod 4 = 1, ⌊x⌋+ 3n/2− 3/2;
• n mod 4 = 0, ⌊x⌋+ 3n/2− 3/2;
• n mod 4 = 0, 2 ⌊x⌋+ 3n/2− 1;
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Example: an Integrated Example(IE)
Find the closed form for ∑

0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
We make a small table for this:
m n mod m = 0 n mod m = 1 n mod m = 2 n mod m == 3

1 ⌊x⌋
2 2

⌊
x
2

⌋
+ n

2 ⌊x⌋+ n
2 −

1
2

3 3
⌊
x
3

⌋
+ n ⌊x⌋+ n− 1 ⌊x⌋+ n− 1

4 4
⌊
x
4

⌋
+ 3n

2 ⌊x⌋+ 3n
2 −

3
2 2

⌊
x
2

⌋
+ 3n

2 − 1 ⌊x⌋+ 3n
2 −

3
2

It looks that: ⌊
x+ kn mod m

m
+

kn

m
− kn mod m

m

⌋
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Example: an Integrated Example(IE)

Find the closed form for ∑
0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
This can be extracted from⌊

x+ kn mod m

m

⌋
+

kn

m
− kn mod m

m
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Example: an Integrated Example(IE)
Find the closed form for ∑

0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.

⌊ x

m

⌋
+

0

m
− 0 mod m

m

+

⌊
x+ n mod m

m

⌋
+

n

m
− n mod m

m

+

⌊
x+ 2n mod m

m

⌋
+
2n

m
− 2n mod m

m

...
...

+

⌊
x+ (m− 1)n mod m

m

⌋
︸ ︷︷ ︸

a⌊ x
a⌋

+
(m− 1)n

m︸ ︷︷ ︸
bn

− (m− 1)n mod m

m︸ ︷︷ ︸
C

.
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Example: an Integrated Example(IE)

Find the closed form for ∑
0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
Looking at the table:
• The second column is 1

2

(
0 + (m−1)n

m

)
m

• The first column: See what
0 mod m, n mod m, 2n mod m, · · · , (m− 1)n mod m will
get.



Basic concepts Solving Recurrences Mod: The binary Op

Example: an Integrated Example(IE)

Find the closed form for ∑
0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
Look at the first row of that one, recall

n =
⌊ n

m

⌋
+

⌊
n+ 1

m

⌋
+ · · ·+

⌊
n+ (m− 1)

m

⌋
• We will encounter the remainder from 1 to n one time(we will

show at Chapt. 4)



Basic concepts Solving Recurrences Mod: The binary Op

Example: an Integrated Example(IE)

Find the closed form for ∑
0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
So we have:

d

(⌊ x

m

⌋
+

⌊
x+ d

m

⌋
+ · · ·+

⌊
x+m− d

m

⌋)
=d

(⌊
x/d

m/d

⌋
+

⌊
x/d+ 1

m/d

⌋
+ · · ·+

⌊
x/d+m/d− 1

m/d

⌋)
=d

⌊x
d

⌋
., and hence, a = d = gcd(m,n).



Basic concepts Solving Recurrences Mod: The binary Op

Example: an Integrated Example(IE)

Find the closed form for ∑
0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
The third column: d

(
1
2

(
0 + m−d

m

)
· md

)
= m−d

2

• c = d−m
2 .



Basic concepts Solving Recurrences Mod: The binary Op

Example: an Integrated Example(IE)

Find the closed form for ∑
0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
Putting altogether:∑

0⩽k<m

⌊
nk + x

m

⌋
= d

⌊x
d

⌋
+

m− 1

2
n+

d−m

2
.

where d = gcd(m,n).



Basic concepts Solving Recurrences Mod: The binary Op

Example: an Integrated Example(IE)
Find the closed form for ∑

0≤k<m

⌊
nk + x

m

⌋
for integer m > 0, integer n.
In fact, m and n are symmetric:∑

0⩽k<m

⌊
nk + x

m

⌋
= d

⌊x
d

⌋
+

m− 1

2
n+

d−m

2

= d
⌊x
d

⌋
+

(m− 1)(n− 1)

2
+

m− 1

2
+

d−m

2

= d
⌊x
d

⌋
+

(m− 1)(n− 1)

2
+

d− 1

2

saying,

∑
0⩽k<m

⌊
nk + x

m

⌋
=

∑
0⩽k<n

⌊
mk + x

n

⌋
, integers m,n > 0.



Thanks


	Basic concepts
	Solving Recurrences
	Mod: The binary Op

